3.776 \(\int \frac{\sqrt{\cot (c+d x)}}{(a+i a \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=145 \[ \frac{\left (\frac{1}{4}-\frac{i}{4}\right ) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac{7}{6 a d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{1}{3 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \]

[Out]

((1/4 - I/4)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[
Tan[c + d*x]])/(a^(3/2)*d) + 1/(3*d*Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)) + 7/(6*a*d*Sqrt[Cot[c + d
*x]]*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.349904, antiderivative size = 145, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.214, Rules used = {4241, 3559, 3596, 12, 3544, 205} \[ \frac{\left (\frac{1}{4}-\frac{i}{4}\right ) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac{7}{6 a d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{1}{3 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cot[c + d*x]]/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((1/4 - I/4)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[
Tan[c + d*x]])/(a^(3/2)*d) + 1/(3*d*Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)) + 7/(6*a*d*Sqrt[Cot[c + d
*x]]*Sqrt[a + I*a*Tan[c + d*x]])

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rule 3559

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(a*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d))
, Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*c*m - a*d*(2*m + n + 1) + b*d*(m + n + 1)*Tan
[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2
+ d^2, 0] && LtQ[m, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3596

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*A + b*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2
*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cot (c+d x)}}{(a+i a \tan (c+d x))^{3/2}} \, dx &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{1}{\sqrt{\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx\\ &=\frac{1}{3 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\frac{5 a}{2}-i a \tan (c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}} \, dx}{3 a^2}\\ &=\frac{1}{3 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{7}{6 a d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{3 a^2 \sqrt{a+i a \tan (c+d x)}}{4 \sqrt{\tan (c+d x)}} \, dx}{3 a^4}\\ &=\frac{1}{3 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{7}{6 a d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{4 a^2}\\ &=\frac{1}{3 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{7}{6 a d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}-\frac{\left (i \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{2 d}\\ &=\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{a^{3/2} d}+\frac{1}{3 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{7}{6 a d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.17174, size = 158, normalized size = 1.09 \[ -\frac{i e^{-4 i (c+d x)} \sqrt{\frac{a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt{\cot (c+d x)} \left (-7 e^{2 i (c+d x)}+8 e^{4 i (c+d x)}+3 e^{3 i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )-1\right )}{6 \sqrt{2} a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cot[c + d*x]]/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((-I/6)*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*(-1 - 7*E^((2*I)*(c + d*x)) + 8*E^((4*I)*(c +
d*x)) + 3*E^((3*I)*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d
*x))]])*Sqrt[Cot[c + d*x]])/(Sqrt[2]*a^2*d*E^((4*I)*(c + d*x)))

________________________________________________________________________________________

Maple [B]  time = 0.392, size = 468, normalized size = 3.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

(-1/12-1/12*I)/d/a^2*(6*I*2^(1/2)*cos(d*x+c)*sin(d*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2
^(1/2))-3*I*2^(1/2)*sin(d*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))+6*2^(1/2)*cos(d*x
+c)^2*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))+7*I*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c
))^(1/2)+9*I*cos(d*x+c)*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-3*2^(1/2)*cos(d*x+c)*arctan((1/2+1/2*I)*(
(cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))+7*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-9*cos(d*x+c)*sin(d*
x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-3*2^(1/2)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))
-7*I*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-7*((cos(d*x+c)-1)/sin(d*x+c))^(1/2))*(cos(d*x+c)/sin(d*x+c))^(1/2)*(a*(
I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)/(2*I*cos(d*x+c)*sin(d*x+c)+2*cos(d*x+c)^2-1)/((cos(d*x+c)-1)/sin(d*
x+c))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 1.58283, size = 1044, normalized size = 7.2 \begin{align*} \frac{{\left (3 \, a^{2} d \sqrt{-\frac{i}{2 \, a^{3} d^{2}}} e^{\left (4 i \, d x + 4 i \, c\right )} \log \left (\frac{1}{4} \,{\left (2 i \, a^{2} d \sqrt{-\frac{i}{2 \, a^{3} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} - 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 3 \, a^{2} d \sqrt{-\frac{i}{2 \, a^{3} d^{2}}} e^{\left (4 i \, d x + 4 i \, c\right )} \log \left (\frac{1}{4} \,{\left (-2 i \, a^{2} d \sqrt{-\frac{i}{2 \, a^{3} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} - 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}{\left (-8 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 7 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-4 i \, d x - 4 i \, c\right )}}{12 \, a^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/12*(3*a^2*d*sqrt(-1/2*I/(a^3*d^2))*e^(4*I*d*x + 4*I*c)*log(1/4*(2*I*a^2*d*sqrt(-1/2*I/(a^3*d^2))*e^(2*I*d*x
+ 2*I*c) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1
))*(e^(2*I*d*x + 2*I*c) - 1)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 3*a^2*d*sqrt(-1/2*I/(a^3*d^2))*e^(4*I*d*x +
4*I*c)*log(1/4*(-2*I*a^2*d*sqrt(-1/2*I/(a^3*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) +
1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*(e^(2*I*d*x + 2*I*c) - 1)*e^(I*d*x + I*c))*e^(
-I*d*x - I*c)) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*
c) - 1))*(-8*I*e^(4*I*d*x + 4*I*c) + 7*I*e^(2*I*d*x + 2*I*c) + I)*e^(I*d*x + I*c))*e^(-4*I*d*x - 4*I*c)/(a^2*d
)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\cot{\left (c + d x \right )}}}{\left (a \left (i \tan{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(1/2)/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Integral(sqrt(cot(c + d*x))/(a*(I*tan(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\cot \left (d x + c\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(cot(d*x + c))/(I*a*tan(d*x + c) + a)^(3/2), x)